It’s All about the Signal Routing: Understanding the Reliability of Qca Circuits and Systems

نویسندگان

  • Timothy J. Dysart
  • Peter M. Kogge
چکیده

by Timothy J. Dysart Much has been written and predicted about the demise of Moore’s law in advancing computing technology. While many of these predictions have fallen by the wayside, the end may be approaching since the ”red brick wall” (areas where scaling progress may end if breakthroughs are not identified) is barely being pushed further into the future. As a result, numerous nanoelectronic devices are being investigated to determine if they can augment or replace silicon-based transistors. Due to a variety of factors, a significant challenge when building a system from any of these devices is how to produce a reliable, predictable system from unreliable components with unpredictable behavior? In this dissertation, the reliability aspects of a specific nanoelectronic architecture – Quantum-dot Cellular Automata (QCA) – are explored. QCA is a unique architecture to explore since the same basic device, a simple cell, is used to implement both logic and interconnect components. The device itself can be implemented using different physical properties, which in turn, influences how the signal routing within the QCA circuits and systems should be designed. This dissertation computes the reliability of QCA circuits and systems based on the reliabilities of the underlying components. This is used to identify how reliable the components should be to achieve a target circuit or system reliability and to identify which components are the most critical to circuit reliability. Additionally, various techniques for improving reliability through the use of hardware redundancy are evaluated to determine how a reliable QCA system should be designed. Lastly, various organizations for a specific interconnect component, a straight wire segment, built from a specific device type, are compared to determine how reliable a component can be. Throughout this dissertation, a constant theme is observed: the organization and reliability of the signal routing has a major impact on circuit and system reliability. To Pam for her love and patience.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

Evolutionary QCA Fault-Tolerant Reversible Full Adder

Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Designing of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1

Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009